Exercise 34

Find the distance from the point $(2,1,-1)$ to the plane $x-2 y+2 z+5=0$.

Solution

The normal vector to the plane \mathbf{n} is obtained from the coefficients of x, y, and $z: \mathbf{n}=(1,-2,2)$. An equation for the line with direction vector $(1,-2,2)$ that passes through $(2,1,-1)$ is

$$
\begin{aligned}
\mathbf{y}(t) & =(1,-2,2) t+(2,1,-1) \\
& =(t,-2 t, 2 t)+(2,1,-1) \\
& =(t+2,-2 t+1,2 t-1) .
\end{aligned}
$$

Substitute $x=t+2, y=-2 t+1$, and $z=2 t-1$ into the equation for the plane and solve for t to find when the line intersects the plane.

$$
(t+2)-2(-2 t+1)+2(2 t-1)+5=0 \quad \rightarrow \quad t=-\frac{1}{3}
$$

The point at which the line intersects the plane is then

$$
\mathbf{y}\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}+2,-2 \frac{-1}{3}+1,2 \frac{-1}{3}-1\right)=\left(\frac{5}{3}, \frac{5}{3},-\frac{5}{3}\right) .
$$

Therefore, the perpendicular distance from $(2,1,-1)$ to the plane is

$$
d=\sqrt{\left(2-\frac{5}{3}\right)^{2}+\left(1-\frac{5}{3}\right)^{2}+\left(-1+\frac{5}{3}\right)^{2}}=1 .
$$

